

Optimised Control of a 10MW Photovoltaic (PV) Plant with 1MW / 1MWh Battery

TWINPV WORKSHOP IN CYPRUS

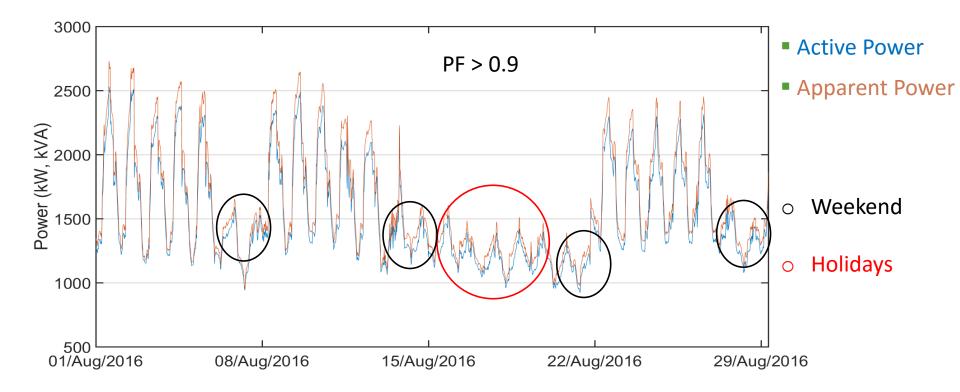
14-DEC-2016

Introduction

- The University of Cyprus (UCY) plans to transform its campus to a microgrid (PV + Battery)
- Developed an energy management algorithm
- Aiming to reduce UCY electricity bill
- Algorithm testing for voltage limits violation at the point of common coupling (PCC) required
- SYSLAB facilities (DTU) were used for the test

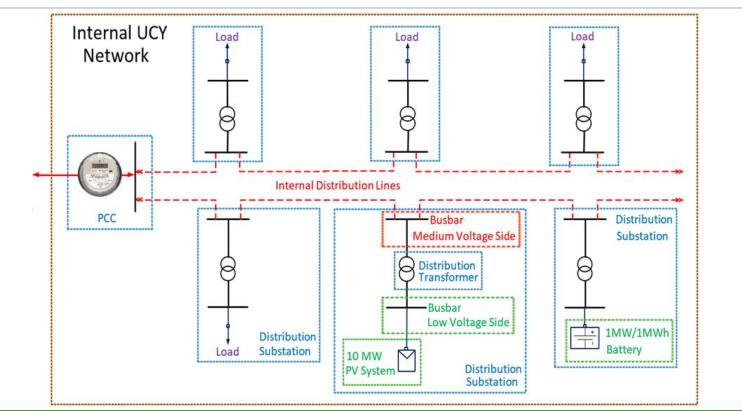
University of Cyprus (UCY) Campus

- Connected to the national grid via a point of common coupling (PCC)
- Ideal for a μG transformation
- Peak load of 2.4MW
- 400kWp PV systems connected and used as self-consumption
- Campus is expanding
- Load demand expected to double by 2017



UCY Load Example (measured, August 2016)

UCY Future Microgrid Plan


- 10MWp PV + 1MW / 1MWh Battery (estimated values but not optimized)
- Net-metering scheme based on Time-of-Use (ToU) tariffs
- Bi-directional electricity meter at the PCC
- Bi-directional Fiber Optic and Power Line Communication (PLC) with local DSO

UCY Future Microgrid Diagram

Laboratory Environment Testing

- Real life μ G testing is difficult or even impossible
- µGs combine different technologies
- Modelling can be inaccurate
- Lab testing face real problems (communication, delays, transients, etc.)

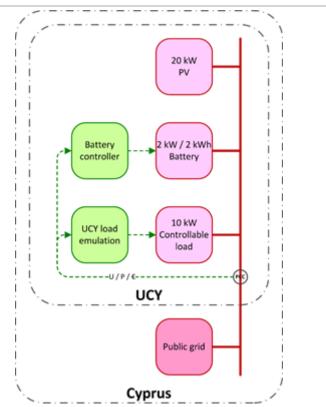
SYSLAB Experimental Facility

- Research Lab for distributed energy resources (DER)
- Facilities located at four main sites
- Sites can be connected via a centralized cross-busbar
- Flexible configuration
- Virtually any configuration of DERs
- Flexible control via MATLAB Script

SYSLAB Facilities

- 25kWp distributed photovoltaics (PV) (3 sites)
- 20kW distributed wind turbines (2 sites)
- 50kW diesel power plant
- 75kW dump load/load bank
- 3x mobile dumb loads

- 15kW / 120kWh vanadium redox battery (VRB)
- 45kVA back-to-back converter
- 3x intelligent buildings (2 residential + 1 office)
- Electric Vehicles (EV)
- EVs with vehicle-to-grid (V2G) capabilities

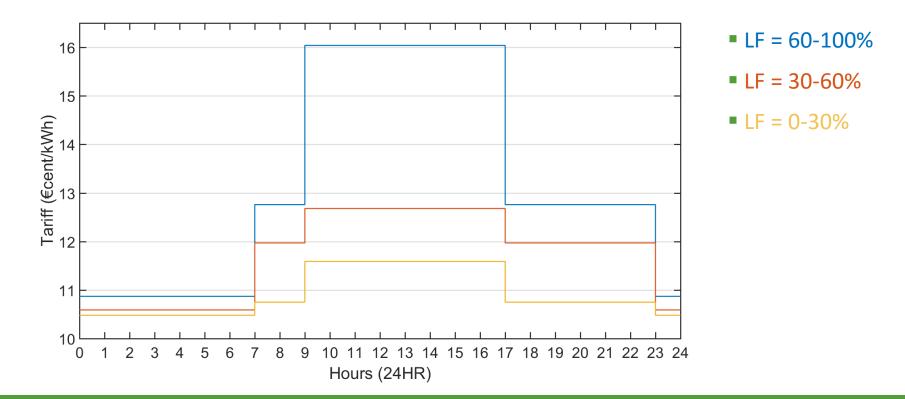


Power System Modelling: UCY Campus

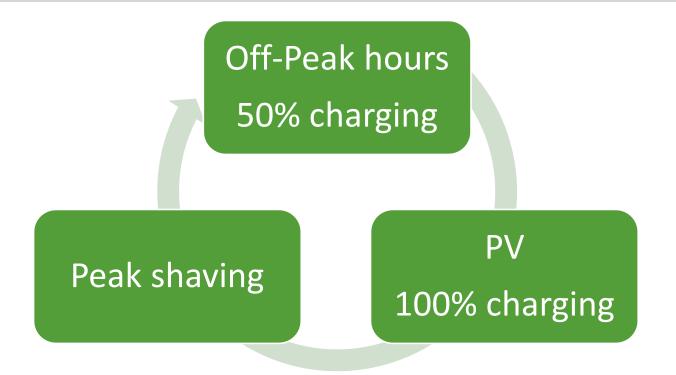
- Scale down factor: 1:500
- Load: 4.8MW to 9.6kW (modelled by a resistive load)
- **PV**: 10MWp to 20kWp (modelled by the distributed PV)
- **Battery**: 1MW / 1MWh to 2kW / 2kWh (modelled by the VRB battery)
- Public grid of Cyprus: 1458MW (not affected by UCY microgrid, assumption in this test)
- PCC: connected to public grid via a long cable (possible voltage regulation issues at the PCC)

Billing Scheme: Time-of-use Tariffs

Period	Hours	Charge	Monthly Load Factor (LF)		
			0-30%	31-60%	61-100%
Peak	09:00 – 17:00	kWh	€0.1604	€0.1268	€0.1159
		kVA (monthly maximum demand)	€13.99	€15.81	€16.99
Intermediate	All remaining hours	kWh	€0.1276	€0.1197	€0.1075
		kVA (monthly maximum demand)	€1.36	€1.97	€4.54
Off-Peak	23:00-07:00	kWh	€0.1087	€0.1059	€0.1048


kVA charge in Peak period: valid from June to September

Billing Scheme: Time-of-use Tariffs

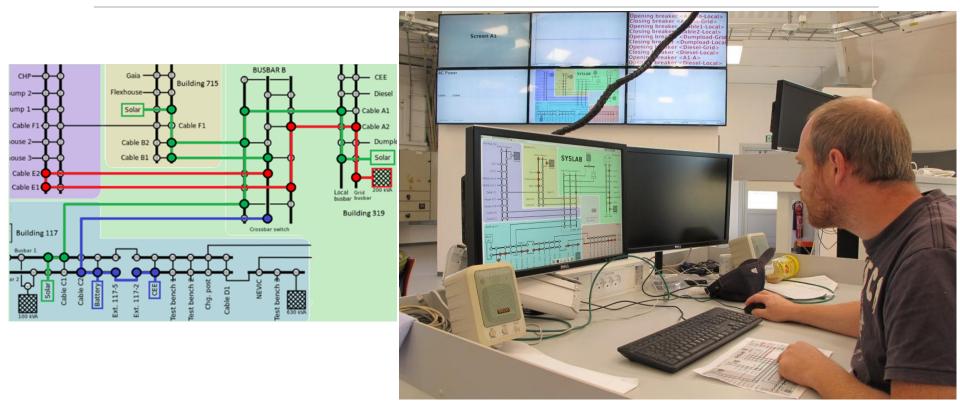


Control Algorithm: Peak shaving

Control Algorithm: Peak Shaving

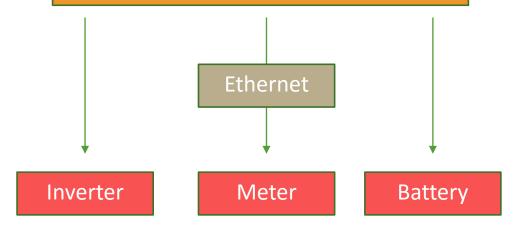
- Electricity Cost: monthly kVA charged at a high premium
- Peak shaving algorithm: reduce cost
- Battery: used for achieving peak shaving
- **Peak shaving value**: optimized through simulations
- Optimum value: 4.8kW (downscaled value)
- Savings: €138,600 per month

	Monthly Demand and Cost						
Condition	Load Shave (kW)	Cost kWh per Month (€)	Peak Hours Cost kVA per Month (€)	Intermediate Hours Cost kVA per Month (€)	Total Cost per Month (€)		
no PV no BESS	NA	289,740	80,190	7,940	377,870		
PV+ BESS	1.8	188,540	55,450	7,770	251,760		
PV+ BESS	2.8	188,540	55,450	7,770	251,760		
PV+ BESS	3.8	188,540	55,450	7,770	251,760		
PV+ BESS	4.8	188,630	42,880	7,770	239,270		
PV+ BESS	5.8	188,740	48,260	7,770	244,770		
PV+ BESS	6.8	188,850	55,450	7,050	251,360		
PV+ BESS	7.8	191,020	55,450	7,770	254,240		
PV+ BESS	8.8	191,020	55,450	7,770	254,240		



DTU

SYSLAB Test (DTU)

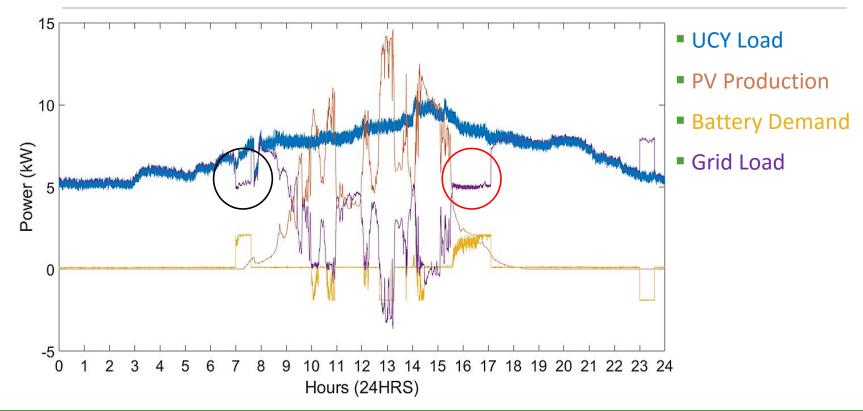


SYSLAB User Interface

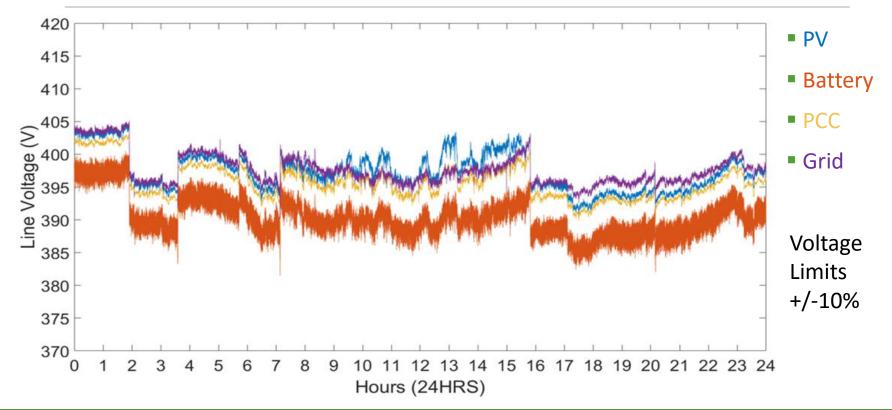
- MATLAB Script
- Embedded Java commands
- Communication over Ethernet
- With hardware and meters

MATLAB Script

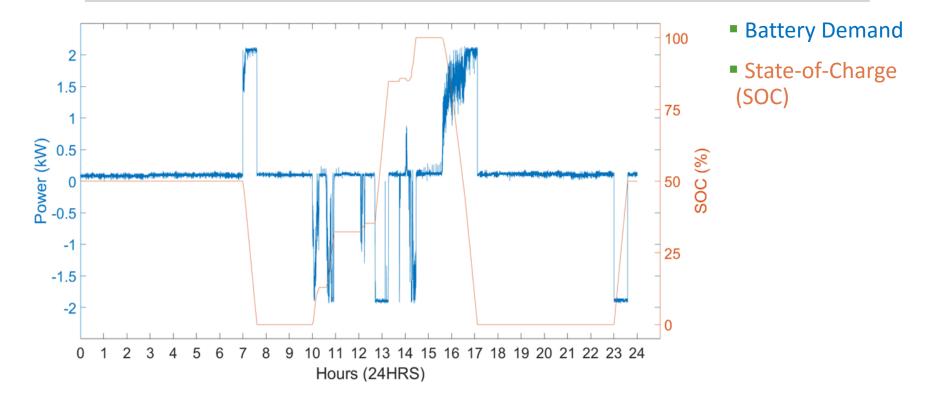
battery.setActivePower(demand);
switchboard1.getActivePower(meter1);



Results: Power Measurements



Results: Voltage Measurements



Results: Battery Measurements

Summary

- UCY future microgrid: 10MWp PV + 1MW / 1MWh Battery (estimated but not optimized)
- SYSLAB Facilities (DTU): Flexible configuration of DERs (peak shaving algorithm testing)
- Experimental results: The voltage limits at the PCC were not violated
- **Peak shaving algorithm**: Promising, provided there is enough PV production, otherwise a large expensive battery is required
- Load Factor (LF): can be improved with peak shaving leading to reduced kWh tariffs
- Future work: Need to optimize the PV and Battery size (power and energy)
- Other future battery uses: dispatchable load, power quality, frequency control
- UCY: will become a carbon neutral institution

Thank you!

Questions?

CONTACTS

Per Nørgaard Technical University of Denmark

pern@elektro.dtu.dk

Michalis Florides University of Cyprus

mflori01@ucy.ac.cy